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Abstract: This paper uses hierarchical regression analysis, a statistically robust method, to explore
the correlations between two meteorological parameters and three particulate matter concentrations.
The dataset is provided by six sensors located in three cities from three countries, and the measure-
ments were taken simultaneously for three months at each minute. Analyses and calculations were
performed with the Statistical Package for the Social Sciences (SPSS). The results underscore that the
complexity of air pollution dynamics is affected by the location even when the same type of sensors
is used, and emphasize that a one-size-fits-all approach cannot effectively address air pollution. The
findings are helpful from three perspectives: for education, to show how to handle and communicate
a solution for local communities’ issues about air pollution; for research, to understand how easy
a university can generate and analyze open-source data; and for policymakers, to design targeted
interventions addressing each country’s challenges.

Keywords: particulate matters; meteorological parameters; hierarchical regression; human health;
environmental education

1. Introduction

Everyone’s quality of life, no matter age or socio-economic situation, is impacted by
the quality of breathed air. Epidemiological studies [1] have revealed an approximately
linear rise in health risk with increasing exposure to urban air pollutants such as PM
(particulate matter) from road transportation. Also, fossil fuel combustion, biomass burn-
ing, construction, and industrial emissions increase health risks. There is no discernible
threshold below which no effects are detectable.

PM10 has effects on respiratory health. Long-term exposure to PM10 (fine particles
having a diameter of less than 10 µm) is associated with a risk for lung cancer [2], specific
circulatory system diseases like cerebrovascular disease, high blood pressure, ischemic
heart disease, arrhythmia [3,4], and mutagenic activity and deoxyribonucleic acid (DNA)
damage for young people 18–40 years old [5,6]. In recent years, it has been shown that
long-term exposure to PM10 during pregnancy is associated with preterm birth and low
birth weight [7], infant mortality risk [8,9], and increased risk for multiple congenital heart
defects [10,11]. The elderly, people with chronic illnesses, children with allergies, and
pregnant women are affected more than others by air pollution [12].

Because fine particles with a diameter of less than 2.5 µm can penetrate deep into the
lungs and pass into the bloodstream, PM2.5 is linked with increased rates of chronic ob-
structive pulmonary disease [13], lung cancer [14], and heart disease and stroke events [15].
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Long-term exposure is linked to neurological disorders [16], acute nasopharyngitis [17],
progression of diabetes mellitus [18], and children’s allergies [19]. Another interesting
study [20] shows that using fireplaces and woodstoves in houses for 4 h/day can decrease
occupant life expectancy by 1.6 years.

Guo et al. [21] show that in China, the lung cancer incidence rate is higher for male
residents in high-temperature or -humidity counties when exposed to PM1 (particulate
matter with an aerodynamic diameter of less than one µm). Long-term exposure to PM1
is associated with impaired lung function in children and adolescents [22]. PM1 alert
thresholds have not yet been established by the WHO (World Health Organization).

During lockdown, when air pollution was very low, [23] studied the pandemic’s influ-
ence on air pollution, public health, and economic growth. In this framework of fixed sys-
tem dynamics analysis, the importance of money was more than evident in the cycle “GDP
(Gross Domestic Product)→ green investments on declining of air pollution→ quality of
environment→ investment in the fixed assets→ GDP”. Low-income countries are even
more affected by air pollution; the main sources of pollution are represented mainly by
fossil fuel and vegetal waste burning in the heating process and industry. Most often, the
regulations are not in the interest of the environment because there are no explicit laws
dealing with industrial pollution [24]. Sheridan et al. [25] linked air pollution to COVID-19
positivity, hospitalizations, and mortality during the pandemic. Li et al. [26] underline
the causal relationship between public attention and air pollution. The results show that
public attention could reduce air pollution. The education of the new generations plays
an essential role in changing the attitude toward the environment. Li and Ramanathan, in
their study from 2018 [27], found a non-linear and negative relationship between command-
and-control regulations, market-based regulations (as environmental regulations), and
environmental performance. They did not find a significant relationship between informal
regulations and environmental performance. Another important detail of this study is
related to the time. Command-and-control regulations impact the environmental perfor-
mance in current and preceding years, market-based regulations produce effects in the
current year, and informal regulations in two years.

Refs. [28–30] studied how PM10 reduces atmospheric visibility as an important com-
ponent of smog, influences meteorological processes and atmospheric chemistry, reduces
photosynthesis in plants through deposition on plant leaf surfaces, and alters soil physico-
chemical properties [31]. Natural ecosystems and biodiversity are affected by air pollution.
For example, some species of lichens disappeared because they took their nutrients straight
from the atmosphere. The change in forest vegetation and heathland reductions are other
consequences. Ozone-sensitive species of trees (pines) are replaced by others that are not
so sensitive (oaks) or even by shrubs, altering the genetic diversity within species [32,33].
Acid rains affect wild vegetation and agriculture [34].

Many factors influence air pollution dynamics. Zang [3] highlights the most important
factors that affect air pollution: relative humidity, temperature, extreme wind speed,
sunshine duration, average wind speed, and rainfall. Extreme wind plays the most crucial
role in air pollution dynamics, and sunshine duration is essential from a thermal point of
view. Air quality is not influenced by average wind speed and rainfall capacity.

This paper aims to investigate the relationships between some variables and test
some hypotheses based on the hierarchical regression analysis. According to Chi and
Voss [35], there are two advantages of the hierarchical regression analysis standard multi-
variate regression: the effects of heterogeneous variables can be nested in a hierarchical
model, combining both individual and aggregate-level characteristics in a model. Re-
gression techniques have been used for a long time as forecasting tools in air pollution
forecasting. STATGRAPHICS software (version 19) was used with good results for fore-
casting, monitoring, and controlling the air quality conditions in Sofia, Bulgaria [36]. Also,
Abdullah et al. [37] used Multiple Linear Regression models for different monsoon seasons
with meteorological factors as predictors to forecast air pollution in Kuala Terengganu,
Malaysia. Panneerselvam et al. [38] used a support vector machine model to predict air
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pollution in the study area using historical data from two observation stations, including
wind direction and speed. The Gaussian process regression predicts particulate particles
with high accuracy. Lee et al. [39] have a different approach, using a threshold quantile re-
gression model. They aimed to capture spatial heterogeneity and heteroscedasticity, adding
two threshold variables to define a spatial cluster. Xu et al. [40] conducted a dynamic
analysis of air pollution emissions using some nonparametric additive regression models
to evaluate sources of PM2.5 in China.

Some authors used hierarchical regression methods based on SPSS to study the corre-
lations between different meteorological parameters, air pollutants, COVID-19 spreading,
environmental justice, health effects, health expenses produced by air pollution, and well-
being states. The datasets used in this study were provided by field monitoring in different
locations using the same type of sensor. Field monitoring can provide vital information
for identifying air pollution sources. It might contribute to developing alarm systems for
sensitive population categories when the pollution thresholds are exceeded. Moreover,
changing behaviors related to air pollution starts locally, mainly based on education.

A. Asadi et al. [41] recognized that field monitoring can accurately measure air pollu-
tion, but these measurements have limited spatial coverage. From this point of view, they
chose to investigate the potential of the data given by the aerosol optical depth sensors of
the Moderate-Resolution Imaging Spectroradiometer to evaluate the air quality parameters.
Based on linear regression analysis, they found a relationship among aerosol optical depth,
metrological data, and air pollution data.

M. Simoni et al. [42] assessed the effects of indoor air pollution on school children’s
respiratory health in Norway, Sweden, Denmark, France, and Italy. Using hierarchical
regression methods, the authors showed that poor air quality is related to respiratory
disturbances and affects nasal patency. Lin et al. [43] used a hierarchical multiple logistical
regression model to analyze the associations between kindergarten-level PM2.5 exposure
and individual-level outcomes of asthmatic and allergic symptoms in China.

In countries like Spain, Italy, the UK, China, Canada, and the USA, P.D. Huarez et al. [44]
found a positive correlation between long-term exposure to high air pollutants and COVID-
19 morbidity and mortality. Also, they showed that particulate matter and some meteoro-
logical factors represent important carriers of infectious microbes and play a critical role in
spreading disease.

Pope et al. [45] detected distributive environmental justice relationships using the
hierarchical multiple regression method. In their analysis, they noticed that young people
(≤17 years old) are significant predictors for ambient ozone and particulate matter concen-
trations, and elderly people (≥65 years old) are the only predictors for ambient particulate
matter. Children and the elderly represent sensitive categories of air pollution, together
with pregnant women and chronic patients. S. Taşkaya [46] used a hierarchical multiple
regression model to investigate the relationship between environmental variables such as
air pollution and well-being.

The goal of this paper is to perform a hierarchical regression analysis between some
meteorological parameters (relative humidity and temperature) and particulate matter
concentrations (PM10, 2.5, and 1) in three countries during summer months using SPSS
software, version 29. This study is necessary to understand how meteorological parameters
influence air pollution and to see if the results are affected by the location when the same
type of sensor is used.

Another important detail is that the PM sensors used in this study were made by
some international students based on a sensor kit. This activity was organized in the
framework of an educational project during summer school [47]. The sensors were installed
in students’ countries and connected to a more extensive network [48]. All sensors were
calibrated by the manufacturer who sold the sensor kit. During summer school, students
and researchers discussed air pollution, the values of the alert thresholds given by WHO in
2021 [49], EU environmental regulations [50–52], selective garbage collection, and climate
change mitigation and attenuation effects. Students have met entrepreneurs focused on
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innovation, researchers, mass media, representatives of companies, and national agencies.
The steps for solving the air pollution issue that affects citizens’ health from Craiova using
the power of education were presented by volunteers. They showed how to develop an
awareness campaign for different target groups to receive the local community’s support.
They also showed how people’s bad habits (burning tires, plastic, vegetal waste, and using
fossil fuels to heat their houses) can be diminished with neighbors’ help.

Local decision-makers can monitor and control air pollution in their areas because
they cannot ignore the health costs and environmental implications. To address these
challenges, funds might be spent on new technology, green spaces, non-polluting heating
methods, and infrastructure. They have the authority to oversee industrial facilities and
devise strategies [53] to prevent urban air pollution.

The novelty of this study is given by three findings: (1) presents a new multi-country
analysis covering Turkey, Slovakia, and Romania in an educational framework; (2) provides
a broad perspective on the impact of some meteorological parameters on particulate matter
(PM1, PM2.5, and PM10) concentrations; and (3) emphasizes how the sensors’ location
affects the results. Such comprehensive cross-country studies are limited in the existing
literature, making this research a pioneering study in air quality assessment.

There are three significant contributions of this study:

(1) The authors focus on the hierarchical regression analysis from the perspective of
finding correlations between meteorological parameters and PM concentrations.

(2) We present two SPPS models considering only one meteorological parameter and two
PM parameters.

(3) We conduct a quantitative air quality analysis in three developing countries. By
considering the quantitative assessment of air pollution, decision-makers can enhance
their decision-making process.

The paper is organized as follows. Theoretical background and review-related work
are included in Section 1. Section 2 presents the sensors, their locations, and the dataset,
followed by the methodology, results, and discussions in Section 3. Section 4 highlights the
conclusions of this study, emphasizing all implications derived from this research.

2. Materials and Methods
2.1. Location and Climate Description

Among Turkey’s 81 areas, Adana (1.4 million inhabitants) is the sixth most important
and quickly expanding. The city is in the center of the Cilician plain, on the Seyhan River,
37◦0′ N, 35◦19.28′ E at an altitude of 23 m, in Southern Turkey. Agriculture, industry,
and trade are Adana’s most important income sources. Adana’s most important income
sources are agriculture, industry, healthcare, public and private services, and regional trade.
Adana’s climate is Mediterranean, with long, hot summers and short, moderate winters.
Adana is 35 km inland from the Mediterranean Sea and has twenty green parks (Ataturk,
Seyhan, ABB-Nation, Ziapas, a, and Dilber parks being only a few examples). Temperatures
often peak in late July and August, with daily highs topping 35 ◦C. Winter temperatures
typically range from 10 to 15 ◦C. In Adana, the average monthly relative humidity ranges
from 49% in August to 81% in January. Adana has two coal-fired thermal power plants,
heavy industry facilities, and construction sites. Adana’s infrastructure includes an airport
and public transportation (buses).

Craiova (44◦20′ N, 23◦49′ E, altitude 100 m) is Romania’s sixth city from the perspective
of the number of inhabitants (243,765 inhabitants). It is a city in development (urban area
of 81.41 km2 city and metropolitan area of 1498.6 km2) with high traffic, construction sites,
and industrial and agriculture businesses. It is in Oltenia Plain, near the east bank of the
river Jiu, in the historical Oltenia region (SW part of Romania). The climate is continental
with Mediterranean influences, with cold, snowy, and partially foggy winters and hot
summers. Craiova has a significant number of companies and firms focused on agriculture
(distribution of pesticides and seeds, sales of agriculture equipment) and industry (vehicle
construction, automotive providers, electric motors, generators, transformers, construction
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materials, energy distribution, collection and recovery of ferrous metal waste, transport,
and fossil fuel distribution). Also, the city has many housing construction sites and a
thermal power plant. The city’s infrastructure includes an airport and public transportation
(buses and trams). The traffic is busy in Craiova. All of these and the geographical position
of Craiova contribute to the city’s air pollution. The City has 17 green parks covering 196
ha, with Romanescu, Tineretului, Hanul Doctorului, and Puskin-Crizantemelor parks being
the most known.

Banská Bystrica (48◦44′07′′ N, 19◦08′43′′, elevation of 361.94 m, area of 103.37 square
kilometers) is the sixth city in Slovakia (76,000 inhabitants). The city is in a valley encircled
by mountain chains (Low Tatras, Vel’ká Fatra, Kremnica) in central Slovakia. The climate
is humid continental, with no dry season and a warm summer. During summer, average
temperatures are between 20 and 26 degrees Celsius. During winter, the temperatures
are low (on average between −6 and 6 ◦C), and moderate snow/rainfall. This city has
19 parks (the most known being Mestský lesopark Urpín, Mestský Park Banská Bystrica,
Park s umenim, Park under the SNP Museum). Banská Bystrica is one of Slovakia’s
most polluted environmental areas due to its adverse geographical location. The city is
in the northern part of the Zvolen basin with mountainous surroundings (Staré Hory
Hills, Kremnica Hills, and Pol’ana), which makes this area poorly ventilated. This causes
insufficient dispersion of pollutants in the air, especially during inversion situations. The
ruggedness and complexity of the landscape of Banská Bystrica and its surroundings
cause mainly car traffic to accumulate along the Hron River, which leads to increased
air pollution in the central urban areas, where PM particulate matter levels are regularly
exceeded. From the industrial point of view, in this area, there is a paper mill and two
pharmaceutical companies. Agriculture is mainly concentrated near Banská Bystrica, with
maize and cereals grown. The immediate surroundings of the town are relatively wooded
and mountainous. Banská Bystrica does not have an airport. Buses are the main type of
public transportation.

2.2. Sensors and Datasets

Six identical low-cost sensors were used in this study. They are type uRADMonitor
SMOGGIE-PM and are produced by Magnasci SRL, Romania. These sensors are lab-tested
for data accuracy and can measure air temperature, relative humidity, and PM1, PM2.5, and
PM10 concentrations in the air. The PM concentrations are measured using an integrated
laser scattering detector [54]. The meteorological parameters are measured using MEM
(Micro Electro Mechanical) systems, and the PM concentrations are measured using a pulse
of coherent IR light shining through a cavity with a PIN photodiode located sideways. The
sensor has a fan that pushes the air into a chamber. When a particle reaches the laser beam,
it scatters the laser light, and a PIN photodiode detects the scattered light. The number of
events correlates to the mass concentration based on the proportionality relation between
the amplitude of the recorded scattered signal and the particle size. The laser scattering
method differs from the gravimetric method that national environmental agencies use. In
general, this type of sensor underestimates the PM concentrations. [55,56]. Even though the
method used by the SMOGGIE-PM sensor is different than the one used by the National
Environmental Agencies, SMOGGIE-PM underestimates the values of PM concentrations.

This study was carried out on data obtained from 6 data loggers: Adana from Turkey,
Craiova from Romania, and Banska Bystrica from Slovakia. Two measuring instruments
from each country were analyzed, and these measurements were collected during the
summer months of 2023. All measurements were taken continuously at each minute. The
measurement interval is one minute for all variables. Approximately 650,000 pieces of data
were analyzed using SPSS software [57]. All sensors were placed in busy areas of each city:
one near a busy traffic intersection and one in the industrial area.
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2.3. Methodology

In this study five variables were used: two meteorological parameters (temperature,
humidity) and three particulate matter concentrations (PM1, PM2.5, and PM10). The
variables were extracted from the uRADMonitor database. Once all the parameters and
fields were determined, the probability of the variables was checked. The next step was to
examine the results of each stage analysis. The R-square change was recorded. At this point,
the contribution of the added variables to the model’s power was established. The last step
was to analyze the model’s validity with SPSS tools. Practically, it tests the reliability and
the statistical significance of the included parameters.

Regression analysis was used as an alternative and a quick way to analyze air pollution
according to established parameters. In the literature, regression equations are generally
obtained by multiple building models. With the support of this analysis, a parametric
analysis of dependent parameters was performed. Since there are little input data in such
an analysis method, architects can use them to select the most effective alternatives at the
initial design stage [58,59]. The regression analysis was performed on a set of independent
variables for each dependent variable. The linear coefficients obtained for each parameter
represent the impact on the output data [60].

2.4. Statistical Analysis

In this study, first, the Kolmogorov–Smirnov test was used to verify the normality of
the distribution of continuous variables. It was evaluated whether there was a significant
difference between the countries’ data, and the Mann–Whitney U Test was applied [56].
The Pearson correlation coefficient was used for the variables for the correlation analysis. In
the present study, we considered PM 2.5 and 10 as dependent variables, whereas indepen-
dent variables were temperature (T) and relative humidity (RH). Hierarchical regression
was used to predict the dependent variable. It is a statistical method of investigating
the relationship between a dependent variable and several independent variables and
testing hypotheses. Linear regression requires a dependent variable. On the other hand,
hierarchical regression is established by the method in which the independent variables
are entered into the regression step by step rather than simultaneously. This regression
analysis accounts for the dependent variable variation of the independent variables; thus,
the relationship between the independent variable x and the dependent variable y (positive
and negative) does not always result in the independent variable being the dependent
variable. Causality is not necessary for there to be a relationship between two variables.
Regression analysis deals with the structure and degree of relationship between variables.

There are a few steps to facilitate the estimation of the hierarchical regression model
with SPSS software (Figure 1). First, identifying potentially important parameters is crucial
for a successful prediction [61]. Once all the parameters and fields are determined, the
next step is to check the probability of the variables. By examining the results of each stage
analysis, the R-square change is observed, and it is determined how the variables added
at each stage contribute to the explanatory power of the model. The model’s validity is
analyzed by testing the reliability and the statistical significance of the included parameters
using SPSS tools.
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3. Results and Discussion

Table 1 shows the descriptive analysis of average temperature (◦C), relative humidity
(%), PM1, PM2.5, and PM10 particulate matter concentrations in June, July, and August in
Turkey, Slovakia, and Romania of all the 650,000 pieces of data.

Table 1. Descriptive Analysis of the Data.

Turkey Slovakia Romania

Months
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1
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PM
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June
Mean 26.0 53.1 9.7 15.0 17.0 26.0 58.7 8.7 13.8 15.0 18.0 60.5 5.2 7.7 8.1
Std.
Dev. 3.3 9.4 4.1 6.3 7.6 2.8 9.3 3.9 6.0 7.2 5.9 12.2 7.7 9.1 9.7

July
Mean 30.0 48.8 8.8 13.0 14.4 29.9 52.4 7.3 11.3 12.0 20.1 60.1 5.3 7.6 8.1
Std.
Dev. 4.0 12.9 4.4 6.5 7.8 3.2 13.3 4.6 7.2 8.0 5.5 11.2 3.5 5.0 5.6

August
Mean 30.7 55.7 12.3 17.9 20.4 29.9 67.4 12.0 18.1 20.3 20.4 64.3 6.3 8.9 9.4
Std.
Dev. 3.7 8.6 3.1 5.0 6.5 2.7 8.6 3.2 5.3 6.9 5.9 11.0 18.0 18.4 18.6

According to this dataset, in which approximately 650,000 pieces of data were collected,
there is a linear increase in the temperature variable from June to August in the selected
countries. Regarding humidity, Turkey, Slovakia, and Romania show a similar pattern in
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June, July, and August. While July generally represents a period when the humidity rate is
lower, it is seen that the humidity rates increase in August. When PM concentrations are
examined, similar trends are observed between Turkey and two other countries. PMs also
increase from June to August in all countries.

Table 2 contains the correlation analysis results for three countries, namely, Turkey,
Slovakia, and Romania. The table quantifies the strength and direction of the relationships
between the relationships between temperature (T), relative humidity (RH), and particu-
late matter concentrations (PM1, PM2.5, and PM10). Each cell in the table represents the
correlation coefficient between the corresponding variables. First, when we examine the
relationship between temperature (T) and other variables, a negative correlation is observed
between temperature and humidity (H), PM1, PM2.5, and PM10. These negative correla-
tions indicate that moisture and particulate matter concentrations decrease as temperature
increases. Additionally, positive and significant correlations exist between humidity (H)
and PM1, PM2.5, and PM10. This shows that as humidity increases, particulate matter
concentrations also increase.

Table 2. Correlation Results for all data according to countries.

Turkey Slovakia Romania

T
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T
(◦C) 1.00 −0.69 −0.15 −0.22 −0.22 1.00 −0.44 −0.03 −0.10 −0.10 1.00 −0.74 0.02 0.02 0.02

RH
(%) 1.00 0.55 0.57 0.55 1.00 0.59 0.60 0.59 1.00 0.08 0.12 0.12

PM1
(µg/m3) 1.00 0.98 0.95 1.00 0.98 0.96 1.00 0.98 0.97

PM2.5
(µg/m3) 1.00 0.99 1.00 0.99 1.00 1.00

PM10
(µg/m3) 1.00 1.00 1.00

Tables 3–5 present the regression results for Turkey, Slovakia, and Romania, focusing
on the relationships between temperature (T), relative humidity (RH), and particulate
matter concentrations (PM1, PM2.5, and PM10) during the three summer months. In these
tables, B represents unstandardized correlation coefficients, Beta (β) represents standard-
ized correlation coefficients, SE represents standard errors, R2 represents the coefficient
of determination, and ∆R2 indicates the change in R2 when additional variables are intro-
duced into the model. A regression analysis of 3-month data for Turkey was performed
in Table 3. In this analysis, the hierarchical analysis method was used, and firstly, only
the effect of temperature was examined (Model 1). Then, the effects of temperature and
humidity were examined together for particulate matter (Model 2). According to the results
from this analysis, when only temperature was used in Model 1, it explained only 6%
of the variation in PM1 concentrations. However, when temperature and humidity are
used in Model 2, they explain 23% of the variation in PM1 concentrations. In other words,
humidity was a more important factor than temperature on PM1. This shows that using
temperature and humidity variables together explains more variance than single PM1
concentrations. For PM2.5, in Model 1, the R2 value explains 10% of PM2.5 concentrations.
When temperature and humidity are used together in Model 2, the R2 value increases to
23.4%. Again, using temperature and relative humidity variables together explains PM2.5.
PM10, when only temperature is used in Model 1, the R2 value explains 11% of PM10
concentrations. When temperature and humidity are used together in Model 2, the R2
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value increases to 23%. In this case, using temperature and humidity variables together
better explains PM10. However, when the analyses were conducted separately for July, it
was seen that temperature and humidity explained the most variance of PM2.5 (43.6%),
and for August, they explained the most variance of PM2.5 (9%).

Table 3. Regression results for Turkey.

June/Turkey/DV = PM1 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.324 −0.245 0.005 0.06 0.06 0.287 0.217 0.007

RH (%) 0.258 0.622 0.002 0.234 0.233

June/Turkey/DV = PM2.5 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.647 −0.317 0.008 0.101 0.101 0.267 0.131 0.01

RH (%) 0.385 0.603 0.003 0.234 0.133

June/Turkey/DV = PM10 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.795 −0.325 0.009 0.105 0.105 0.287 0.067 0.013

RH (%) 0.258 0.528 0.004 0.23 0.125

July/Turkey/DV = PM1 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.374 −0.315 0.005 0.1 0.099 0.306 0.258 0.006

RH (%) 0.274 0.804 0.002 0.417 0.318

July/Turkey/DV = PM2.5 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.624 −0.348 0.008 0.121 0.121 −0.402 0.224 0.01

RH (%) −0.414 0.801 0.003 0.436 0.315

July/Turkey/DV = PM10 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.731 −0.349 0.009 0.122 0.122 0.414 0.198 0.01

RH (%) 0.462 0.767 0.003 0.411 0.289

August/Turkey/DV = PM1 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.124 −0.128 0.004 0.016 0.099 0.034 0.035 0.007

RH (%) 0.059 0.197 0.002 0.029 0.07

August/Turkey/DV = PM2.5 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.276 −0.173 0.006 0.03 0.121 −0.402 0.075 0.011

RH (%) −0.414 0.3 0.003 0.058 0.091

August/Turkey/DV = PM10 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.376 −0.18 0.008 0.032 0.032 0.085 0.041 0.014

RH (%) 0.173 0.267 0.004 0.055 0.023

IV = Independent Variable; DV = Dependent Variable.
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Table 4. Regression results for Slovakia.

June/Slovakia/DV = PM1 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.039 0.035 0.004 0.001 0.001 0.257 0.227 0.005

RH (%) 0.154 0.291 0.002 0.049 0.048

June/Slovakia/DV = PM2.5 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.051 −0.037 0.005 0.001 0.001 0.384 0.275 0.006

RH (%) 0.236 0.36 0.003 0.074 0.073

June/Slovakia/DV = PM10 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.046 0.031 0.005 0.001 0.001 0.396 0.268 0.006

RH (%) 248 0.357 0.003 0.073 0.072

July/Slovakia/DV = PM1 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.004 0.003 −0.01 0.0001 1 × 10−4 0.333 0.491 0.004

RH (%) 0.201 0.622 0.002 0.139 0.139

July/Slovakia/DV = PM2.5 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.019 −0.02 0.005 0.0001 1 × 10−4 0.481 0.5 0.006

RH (%) 0.297 0.648 0.003 0.074 0.074

July/Slovakia/DV = PM10 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) −0.025 −0.024 0.001 0.099 0.099 0.521 0.492 0.006

RH (%) 0.325 0.645 0.003 0.15 0.051

August/Slovakia/DV = PM1 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.103 0.033 0.014 0.001 0.001 0.651 0.212 0.023

RH (%) 0.37 0.224 0.012 0.02 0.019

August/Slovakia/DV = PM2.5 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.142 0.045 0.014 0.002 0.002 0.983 0.311 0.023

RH (%) 0.568 0.335 0.012 0.043 0.041

August/Slovakia/DV = PM10 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.14 0.044 0.014 0.002 0.002 1.039 0.326 0.023

RH (%) 0.607 0.355 0.012 0.048 0.046

IV = Independent Variable; DV = Dependent Variable.



Sustainability 2023, 15, 16735 11 of 16

Table 5. Regression results for Romania.

June/Romania/DV = PM1 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.11 0.103 4 0.011 0.011 0.258 0.241 0.004

RH (%) 0.141 0.29 0.002 0.076 0.065

June/Romania/DV = PM2.5 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.142 0.103 0.005 0.011 0.011 0.355 0.258 0.005

RH (%) 0.203 0.325 0.002 0.092 0.081

June/Romania/DV = PM10 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.156 0.107 0.005 0.011 0.011 0.397 0.273 0.005

RH (%) 0.23 0.348 0.002 0.105 0.094

July/Romania/DV = PM1 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.084 0.132 0.002 0.017 0.017 0.254 0.398 0.002

RH (%) 0.183 0.506 0.001 0.20 0.186

July/Romania/DV = PM2.5 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.096 0.102 0.003 0.01 0.01 0.34 0.361 0.003

RH (%) 0.263 0.491 0.002 0.185 0.175

July/Romania/DV = PM10 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.12 0.109 0.004 0.012 0.012 0.410 0.374 0.004

RH (%) 0.313 0.504 0.002 0.195 0.183

August/Romania/DV = PM1 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.105 0.049 0.007 0.002 0.002 0.479 0.227 0.01

RH (%) 0.321 0.25 0.006 0.033 0.031

August/Romania/DV = PM2.5 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.124 0.056 0.008 0.003 0.003 0.689 0.309 0.01

RH (%) 0.485 0.356 0.006 0.066 0.063

August/Romania/DV = PM10 (µg/m3)

IV = Variable Model 1 Model 2

B β SE R2 ∆R2 B β SE R2 ∆R2

T (◦C) 0.138 0.06 0.008 0.004 0.004 0.775 0.34 0.011

RH (%) 0.547 0.393 0.006 0.08 0.076

IV = Independent Variable; DV = Dependent Variable.
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Results from Slovakia’s measurements show that when only temperature is used in
Model 1, it explains only 0.1% of the variation in PM1 concentrations (Table 4). When
temperature and humidity are used together in Model 2, this value increases to 4.9% for
the analysis of June. For PM2.5, when Model 1 R2 is 0.1%, Model 2 R2 is 7.4% However,
R2 values are still low, indicating that temperature and humidity variables cannot explain
PM1 concentrations in Slovakia. According to the PM2.5 and PM10 data results, the low R2

values indicate the limited explanatory capacity of temperature and humidity variables.
In July, temperature and humidity explained the most variance of PM10 (15%), and for
August, they explained the most variance of PM10 (4.8%)

When the one variable included in Model 1 for Romania is temperature, it explains
1.1% of the variance in PM1 concentrations (Table 5). This figure rises to 7.6% when
temperature and humidity are included in Model 2 for June. However, when the analyses
were conducted separately for June, it was seen that temperature and humidity explained
the most variance of PM10 (10.5%). When July is analyzed, Model 2 reaches the highest
R2 value in PM1, which is 20%. This indicates that using temperature and humidity
variables together better explains PM10 concentrations in Romania. For PM1, PM2.5, and
PM10, when Model 1 and Model 2 are compared, it is seen that humidity is more effective
among the temperature and humidity variables in Romania. However, a higher R2 value is
obtained by using temperature and humidity together.

When the same type of sensor is used, the location affects the results. The study
emphasizes that a one-size-fits-all approach cannot effectively address air pollution. For
example, the observed fluctuations in R2 values point to the complex relationships be-
tween meteorological conditions and air quality, indicating a complicated relationship
between temperature and relative humidity, and particulate matter concentrations. For
instance, compared to PM1, the higher R2 values for PM2.5 and PM10 in Turkey suggest
that temperature and humidity have a more noticeable impact on these particulate matter
fractions. However, Slovakia’s lower R2 values imply that other factors—possibly con-
nected to regional characteristics, air circulations, or industrial activity—may impact PM
concentrations more. These findings suggest more research into the relationships between
local industrial practices, climate, and air quality dynamics. Comprehensive knowledge is
necessary to create focused air pollution mitigation plans unique to each location.

Other meteorological factors should be considered to understand the air pollution
dynamics better locally. Solar radiation, dewpoint temperature, precipitation, cloud pattern,
and ambient temperature affect the spatial distribution pattern of PM, whereas wind speed
influences PM’s long-range horizontal transport, dispersion, and re-suspension [62,63].

Even a part of the solution to the air pollution problem is represented by the sun
and wind energy, with all three cities having good solar and wind potential, whereby it
is in the power of decision-makers to install solar panels on the roofs of the buildings, to
replace old public transportation with one based on electric energy or biogas, to make
rules for construction sites, and to build city bypass belts. Other national or international
educational initiatives might aim as project activities to build more complex sensors that
can measure other parameters regarding wind velocity and sunshine duration. Some
collaborations between the universities with the National Agencies of Meteorology or the
National Environmental Agencies might help to improve future datasets. The educational
initiatives aim to train new generations to respect the environment and understand the
consequences of air pollution on human health and biodiversity.

4. Conclusions

This study investigates the variations in particulate matter (PM1, PM2.5, and PM10),
temperature, and relative humidity across Turkey, Slovakia, and Romania during June, July,
and August 2023. The findings show significant variations between the results in these
three countries. The observed fluctuations in R2 values point to the complex relationships
between meteorological conditions and air quality, indicating a complicated relationship
between meteorological parameters and PM concentrations. For instance, compared to PM1,
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the higher R2 values for PM2.5 and PM10 in Turkey suggest that temperature and humidity
have a more noticeable impact on these particulate matter fractions. However, Slovakia’s
lower R2 values imply that other factors—possibly connected to regional characteristics, air
circulations, or industrial activity—may impact PM concentrations more. These findings
suggest more research into the relationships between local industrial practices, climate,
and air quality dynamics. Duration of sunshine, dewpoint temperature, precipitation,
cloud pattern, temperature, and wind remain essential factors for air quality prediction.
Comprehensive knowledge is necessary to create focused air pollution mitigation plans
unique to each location. More effective air quality management can help reduce PM
concentrations. Understanding the factors affecting air quality is essential for formulating
targeted and effective air pollution abatement strategies.

There are four limitations of this study: 1. a dataset for only three months; 2. the PM
sensors can measure only two meteorological parameters and three PM concentrations; 3.
the method used by the SMOGGIE-PM sensor to measure PM concentration (laser scatter-
ing) is different from the one used by the national environmental agencies (gravimetric);
and 4. Adana, Craiova, and Banska Bystrica have different geographical features and
sources of air pollution. Each limitation has its consequences.

When examining the differences between PM concentrations, temperature, and relative
humidity variables in Turkey, Slovakia, and Romania in more detail, several factors should
be considered:

(1) Climatic Conditions: The fact that Turkey, Romania, and Slovakia have different
climate zones may affect air pollution differently. For example, Turkey is known for
hot and dry summers, while Romania and Slovakia may experience a more temperate
and humid climate. This can affect PM concentrations because temperature and
humidity majorly impact particulate matter formation, transport, and distribution.

(2) Industrial Activities: Industrial activity levels between countries may vary. Intensive
industrial activities can increase PM levels, adding to the sources of air pollution. Pol-
luting sources such as coal, oil, and industrial waste significantly impact PM pollution.

(3) Air Circulation: Air pollution levels also depend on the speed and direction of air
circulation. Different local air masses and wind patterns can affect how PM particles
are transported. This may explain the differences between countries.

(4) Geographic Factors: Geographical characteristics of countries can affect PM pollution
levels. Geographic factors such as mountains, valleys, rivers, and seas can affect air
pollution transport and deposition.

(5) Public Behavior: Daily behavior of the public, such as heating, transportation, and
industrial activities, can also affect PM concentrations.

(6) Air Quality Management: Each country has different policies for monitoring and
managing air quality. These policies may affect their ability to control air pollution
levels. More effective air quality management can help reduce PM concentrations.

The reasons behind the differences between Turkey, Slovakia, and Romania are com-
plex and based on the interaction of multiple factors, the results being affected by location.
Therefore, analyzing each country’s PM pollution by considering several factors such as
climate, industrial activities, geographical factors, and public behavior will be examined in
future studies, and the interaction of these factors will help explain the different levels of
PM pollution between countries. Future work might be to expand the dataset for a more
extended period, download data from the national environmental agencies and CAMS
(Copernicus Atmosphere Monitoring Service) [64,65], and compare them with the one
given by our sensors.
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